ON A GENERALIZATION OF LIFTING MODULES RELATIVE TO A TORSION THEORY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks of modules relative to a torsion theory

Relative to a hereditary torsion theory $tau$ we introduce a dimension for a module $M$, called {em $tau$-rank of} $M$, which coincides with the reduced rank of $M$ whenever $tau$ is the Goldie torsion theory. It is shown that the $tau$-rank of $M$ is measured by the length of certain decompositions of the $tau$-injective hull of $M$. Moreover, some relations between the $tau$-rank of $M$ and c...

متن کامل

ranks of modules relative to a torsion theory

relative to a hereditary torsion theory $tau$ we introduce a dimension for a module $m$, called {em $tau$-rank of} $m$, which coincides with the reduced rank of $m$ whenever $tau$ is the goldie torsion theory. it is shown that the $tau$-rank of $m$ is measured by the length of certain decompositions of the $tau$-injective hull of $m$. moreover, some relations between the $tau$-rank of $m$ and c...

متن کامل

–supplemented Modules Relative to a Torsion Theory

Let R be ring and M a right R-module. This article introduces the concept of τ −⊕-supplemented modules as follows: Given a hereditary torsion theory in Mod-R with associated torsion functor τ we say that a module M is τ −⊕-supplemented when for every submodule N of M there exists a direct summand K of M such that M = N +K and N ∩K is τ−torsion, and M is called completely τ −⊕-supplemented if ev...

متن کامل

LIFTING MODULES WITH RESPECT TO A PRERADICAL

Let $M$ be a right module over a ring $R$, $tau_M$ a preradical on $sigma[M]$, and$Ninsigma[M]$. In this note we show that if $N_1, N_2in sigma[M]$ are two$tau_M$-lifting modules such that $N_i$ is $N_j$-projective ($i,j=1,2$), then $N=N_1oplusN_2$ is $tau_M$-lifting. We investigate when homomorphic image of a $tau_M$-lifting moduleis $tau_M$-lifting.

متن کامل

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2013

ISSN: 1027-5487

DOI: 10.11650/tjm.17.2013.1913